E-prints by Ruslan Sharipov

Счетчик посещений:

74. arXiv:0802.1491 [src,pdf]
Ruslan Sharipov
On operator fields in the bundle of Dirac spinors.
73. arXiv:0801.0622 [src,pdf]
Ruslan Sharipov
A note on Kosmann-Lie derivatives of Weyl spinors.
72. arXiv:0801.0008 [src,pdf]
Ruslan Sharipov
A cubic identity for the Infeld-van der Waerden field and its application.
71. arXiv:0711.0555 [src,pdf]
Ruslan Sharipov
A note on pairs of metrics in a three-dimensional linear vector space.
70. arXiv:0710.3949 [src,pdf]
Ruslan Sharipov
A note on pairs of metrics in a two-dimensional linear vector space.
69. arXiv:0709.1460 [src,pdf]
Ruslan Sharipov
On deformations of metrics and their associated spinor structures.
68. arXiv:0708.2508 [src,pdf]
Ruslan Sharipov
On Killing vector fields of a homogeneous and isotropic universe in closed model.
67. arXiv:0708.1171 [src,pdf]
Ruslan Sharipov
On the spinor structure of the homogeneous and isotropic universe in closed model.
66. arXiv:0707.0482 [src,pdf]
Ruslan Sharipov
Comparison of two formulas for metric connections in the bundle of Dirac spinors.
65. arXiv:0705.0350 [src,pdf]
Ruslan Sharipov
Algorithms for laying points optimally on a plane and a circle.
64. hep-ph/0703001 [src,pdf]
Ruslan Sharipov
The Higgs field can be expressed through the lepton and quark fields.
63. math/0702029 [src,pdf,russian_pdf]
Ruslan Sharipov
Foundations of geometry for university students and high-school students.
62. math/0612104 [src,pdf,russian_pdf]
Ruslan Sharipov
Representations of finite groups.
61. math/0605709 [src,pdf]
Ruslan Sharipov
A note on the Standard Model in a gravitation field.
60. math/0604145 [src,pdf]
Ruslan Sharipov
A note on connections of the Standard Model in a gravitation field.
59. math/0603611 [src,pdf]
Ruslan Sharipov
The electro-weak and color bundles for the Standard Model in a gravitation field.
58. math/0603367 [src,pdf]
Ruslan Sharipov
On the Dirac equation in a gravitation field and the secondary quantization.
57. math/0602359 [src,pdf]
Ruslan Sharipov
A note on metric connections for chiral and Dirac spinors.
56. math/0601262 [src,pdf]
Ruslan Sharipov
A note on Dirac spinors in a non-flat space-time of general relativity.
55. math/0512396 [src,pdf]
Ruslan Sharipov
Commutation relationships and curvature spin-tensors for extended spinor connections.
54. math/0511350 [src,pdf]
Ruslan Sharipov
Spinor functions of spinors and the concept of extended spinor fields.
53. cond-mat/0504180 [src,pdf]
Ruslan Sharipov
A note on the dynamics and thermodynamics of dislocated crystals.
52. math/0503332 [src,pdf]
Ruslan Sharipov
Tensor functions of tensors and the concept of extended tensor fields.
51. math-ph/0502007 [src,pdf]
Jeffrey Comer, Ruslan Sharipov
On the geometry of a dislocated medium.
50. math/0412421 [src,pdf,russian_pdf]
Ruslan Sharipov
Course of differential geometry.
49. cond-mat/0411148 [src,pdf]
Ruslan Sharipov
Burgers space versus real space in the nonlinear theory of dislocations.
48. cond-mat/0410552 [src,pdf]
Ruslan Sharipov
Gauge or not gauge?
47. math-ph/0410006 [src,pdf]
Jeffrey Comer, Ruslan Sharipov
A note on the kinematics of dislocations in crystals.
46. cond-mat/0408433 [src,pdf]
Sergei F. Lyuksyutov, Ruslan A. Sharipov
Separation of plastic deformations in polymers based on elements of general nonlinear theory.
45. cond-mat/0408247 [src,pdf]
Sergei F. Lyuksyutov, Ruslan A. Sharipov, Grigori Sigalov, Pavel B. Paramonov
Exact analytical solution for electrostatic field produced by biased atomic force microscope tip dwelling above dielectric-conductor bi-layer.
44. math/0405323 [src,pdf,russian_pdf]
Ruslan A. Sharipov
Course of linear algebra and multidimensional geometry.
43. math/0403252 [src,pdf,russian_pdf]
Ruslan A. Sharipov
Quick introduction to tensor analysis.
42. physics/0311011 [src,pdf,russian_pdf]
Ruslan A. Sharipov
Classical Electrodynamics and Theory of Relativity.
41. cond-mat/0304190 [src,pdf]
Sergei Lyuksyutov, Ruslan Sharipov
Note on kinematics, dynamics, and thermodynamics of plastic glassy media .
40. math/0212059 [src,pdf]
Ruslan Sharipov
On the subset of normality equations describing generalized Legendre transformation.
39. math/0210216 [src,pdf]
Ruslan Sharipov
V-representation for normality equations in geometry of generalized Legendre transformation.
38. math/0208029 [src,pdf]
Ruslan Sharipov
On the concept of normal shift in non-metric geometry.
37. math/0204253 [src,pdf]
Ruslan Sharipov
Minimal tori in five-dimensional sphere in $C^3$.
36. math/0204161 [src,pdf]
Ruslan Sharipov
Comparative analysis for pair of dynamical systems, one of which is Lagrangian.
35. cs/0201007 [src,pdf]
Ruslan Sharipov
Algorithm for generating orthogonal matrices with rational elements.
34. math/0112089 [src,pdf]
Ruslan Sharipov
Normal shift in general Lagrangian dynamics.
33. math-ph/0112045 [src,pdf]
I. Yu. Cherdantzev, R. A. Sharipov
Solitons on a finite-gap background in Bullough-Dodd-Jiber-Shabat model.
32. math/0108158 [src,pdf]
Ruslan Sharipov
Dynamical systems admitting normal shift and wave equations.
31. math/0107212 [src,pdf]
Ruslan Sharipov
A note on Newtonian, Lagrangian and Hamiltonian dynamical systems in Riemannian manifolds.
30. math/0102141 [src,pdf]
Ruslan Sharipov
Second problem of globalization in the theory of dynamical systems admitting the normal shift of hypersurfaces.
29. math/0101150 [src,pdf]
Ruslan Sharipov
First problem of globalization in the theory of dynamical systems admitting the normal shift of hypersurfaces.
28. math/0012110 [src,pdf]
Ruslan Sharipov
On the solutions of weak normality equations in multidimensional case.
27. math/0009194 [src,pdf]
Ruslan Sharipov
On rational extension of Heisenberg algebra.
26. math/0008081 [src,pdf]
Ruslan Sharipov
Newtonian dynamical systems admitting normal blow-up of points.
25. math/0006230 [src,pdf]
Ruslan Sharipov
Orthogonal matrices with rational components in composing tests for High School students.
24. math/0006125 [src,pdf]
Ruslan Sharipov
Newtonian normal shift in multidimensional Riemannian geometry.
23. math/0002202 [src,pdf]
Ruslan Sharipov
Dynamical systems admitting the normal shift,
Thesis for the degree of Doctor of Sciences in Russia, AmSTeX, 219 pages
.
22. math/9907130 [src,pdf]
V. V. Dmitrieva, E. G. Neufeld, R. A. Sharipov, A. A. Tsaregorodtsev
On a point symmetry analysis for generalized diffusion type equations.
21. solv-int/9905008 [src,pdf]
R. F. Bikbaev, R. A. Sharipov
Magnetization waves in Landau-Lifshitz Model.
20. math/9904080 [src,pdf]
V. V. Dmitrieva, A. V. Gladkov, R. A. Sharipov
On some equations that can be brought to the equations of diffusion type.
19. math/9802027 [src,pdf]
R. A. Sharipov
Effective procedure of point-classification for the equation $y'' = P + 3 Q y' + 3 R {y'}^2 + S {y'}^3$.
18. solv-int/9712001 [src,pdf]
O. N. Mikhailov, R. A. Sharipov
On the geometry of point-expansions for certain class of differential equations of the second order.
17. solv-int/9706003 [src,pdf]
R. A. Sharipov
On the point transformations for the equation $y''= P + 3Qy' + 3R{y'}^2 + S{y'}^3$.
16. solv-int/9703003 [src,pdf]
V. V. Dmitrieva, R. A. Sharipov
On the point transformations for the second order differential equations.
15. solv-int/9610006 [src,pdf]
A. Yu. Boldin, R. A. Sharipov
On the solution of normality equations for the dimension $n\geq 3$.
14. alg-geom/9506015 [src,pdf]
R. A. Sharipov, E. N. Tzyganov
On the separate algebraicity along the families of algebraic curves.
13. alg-geom/9412015 [src,pdf]
R. A. Sharipov, A. B. Sukhov
On the separate algebraicity along the families of algebraic curves.
12. solv-int/9412001 [src,pdf]
R. A. Sharipov, R. I. Yamilov
Backlund transformation and the construction of the integrable boundary-value problem for the equation $u_{xx}-u_{tt}=e^u-e^{-2u}$.
11. solv-int/9407003 [src,pdf]
M. V. Pavlov, R. A. Sharipov, S. I. Svinolupov
Invariant Integrability Criterion for the Equations of Hydrodynamical Type.
10. astro-ph/9405049 [src,pdf]
A. Yu. Boldin, A. A. Bronnikov, V. V. Dmitrieva, R. A. Sharipov
Complete normality conditions for the dynamical systems on Riemannian manifolds.
9. hep-th/9405021 [src,pdf]
A. Yu. Boldin, V. V. Dmitrieva, S. S. Safin, R. A. Sharipov
Dynamical systems accepting the normal shift on an arbitrary Riemannian manifold.
8. solv-int/9404003 [src,pdf]
R. A. Sharipov
Problem of Metrizability for the Dynamical Systems Accepting the Normal Shift.
7. solv-int/9404002 [src,pdf]
R. A. Sharipov
Dynamical Systems Accepting the Normal Shift.
6. patt-sol/9404001 [src,pdf]
A. Yu. Boldin, R. A. Sharipov
Multidimensional Dynamical Systems Accepting the Normal Shift.
5. chao-dyn/9404001 [src,pdf]
A. Yu. Boldin, R. A. Sharipov
Dynamical Systems Accepting the Normal Shift.
Hosted by uCoz