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3 NOTE ON KINEMATICS, DYNAMICS, AND

THERMODYNAMICS OF PLASTIC GLASSY MEDIA.

S. F. Lyuksyutov, R. A. Sharipov

Abstract. Unified geometric approach to describing kinematics of elastic and plas-
tic deformations of continuous media is suggested. On the base of this approach
we study mechanical deformations, viscous flow, and heat transport in glassy plastic
media. As a result we derive appropriate differential equations for these phenomena
in a form applicable to liquids, elastic solids, and to plastic solid materials as well.

1. Introduction.

AFM-assisted1 electrostatic nanolithography (AFMEN) was suggested in [1] and
[2]. It is new technique for nano-scale patterns formation on planar polymer films.
By this paper we start series of papers aimed to prepare theoretical background for
further numeric simulation of AFMEN process. First of all we consider kinematics
(i. e. time-dependent geometry) of deformations and apply differential geometry to
study it. Our main result is a method for separating elastic and plastic deformations
within general nonlinear deformation tensor. Then we build this method into the
standard framework of balance equations traditionally used to describe dynamics
and thermodynamics of moving continuous media. Applying electrostatic field,
surface phenomena, and phase transitions will be considered in separate papers.

As far as our technique is concerned, we use curvilinear coordinates from the
very beginning. This looks a little bit tricky, but in this way we make transparent
tensorial nature of all quantities we use. Moreover, the problem of AFMEN pro-
cess simulation, which we are going to study numerically, has obvious cylindrical
symmetry. So we prepare use of cylindrical coordinates in our future calculations.
For reader’s convenience in section 2 just below we resume some well-known facts
concerning curvilinear coordinates.

2. Moving frame of curvilinear coordinates.

Let x1, x2, x3 be three Cartesian coordinates of a point. Below we use both up-
per and lower indices, following traditions of tensorial analysis (see [3]). Curvilinear
coordinates y1, y2, y3 of a point are usually introduced by functions











x1 = x1(y1, y2, y3),

x2 = x2(y1, y2, y3),

x3 = x3(y1, y2, y3).

(2.1)

1Here AFM is abbreviation for Atomic Force Microscope.
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Functions (2.1) define transition to curvilinear coordinates. Transition back to
Cartesian coordinates is determined by similar three functions











x1 = x1(y1, y2, y3),

x2 = x2(y1, y2, y3),

x3 = x3(y1, y2, y3).

(2.2)

Maps (2.1) and (2.2) are inverse to each other. Therefore if we define their Jacobi
matrices S and T by partial derivatives

S i
j =

∂xi

∂yj
, T i

j =
∂yi

∂xj
, (2.3)

they are also inverse to each other: T = S−1. Matrix S is called direct transition

matrix, while T is called inverse transition matrix.
Let e1, e2, e3 be constant frame of Cartesian coordinates x1, x2, x3, i. e. these

are three base vectors directed along three coordinate axes. Then, using functions
(2.1), we can define vectorial function r = r(y1, y2, y3):

r =

3
∑

i=1

xi(y1, y2, y3) ei. (2.4)

This is radius-vector of a point expressed through curvilinear coordinates. Differ-
entiating (2.4) with respect to y1, y2, y3, we get three vector-functions:

Ei = Ei(y
1, y2, y3) =

∂r

∂yi
, i = 1, 2, 3. (2.5)

Vectors E1, E2, E3 form a frame of curvilinear coordinates y1, y2, y3. This is mov-
ing frame, since vectors E1, E2, E3 depend on coordinates of a point to which they
are attached. Transition matrices (2.3) relate moving frame E1, E2, E3 to constant
frame e1, e2, e3 of Cartesian coordinates and vice versa:

Ei =

3
∑

q=1

S q
i eq, ei =

3
∑

q=1

T q
i Eq.

Mutual scalar products of frame vectors (2.5) define fundamental tensor of our
space. This is metric tensor g with components:

gij = (Ei, Ej). (2.6)

Matrix (2.6) also is known as Gram matrix of moving frame E1, E2, E3. Inverse
matrix to (2.6) define another fundamental tensor. This is dual metric tensor; by
tradition it is denoted by the same letter g, but for its components upper indices
are used: gij . Being mutually inverse, metric tensors are related by formula

3
∑

q=1

giq gqj = δi
j .
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Here δi
j are Kronecker symbols. They determine components of unit matrix:

δi
j =

{

1 for i = j,

0 for i 6= j.

3. Tensor fields in curvilinear coordinates.

All tensor fields in curvilinear coordinates y1, y2, y3 are referenced to moving
frame E1, E2, E3. This determine some features of their differentiation. Thus, if
ϕ = ϕ(y1, y2, y3) is a scalar field, then applying gradient operator ∇ to it we get
three components defined by partial derivatives:

∇iϕ =
∂ϕ

∂yi
, i = 1, 2, 3. (3.1)

However, unlike (3.1), applying gradient operator to tensor field X is more compli-
cated procedure. For components of resulting tensor field ∇X we have formula

∇mX i1... ir

j1... js
=

∂X i1... ir

j1... js

∂ym
+

+

r
∑

k=1

3
∑

ak=1

Γik

m ak
X i1... ak... ir

j1... ... ... js
−

s
∑

k=1

3
∑

bk=1

Γbk

m jk
X i1... ... ... ir

j1... bk... js
.

(3.2)

Here Γk
ij is three-dimensional array of connection components or Christoffel symbols.

They are defined by metric tensor g according to the following formula:

Γk
ij =

3
∑

s=1

gks

2

(

∂gis

∂yj
+

∂gsj

∂yi
− ∂gij

∂ys

)

. (3.3)

Formulas (3.2) and (3.3) are well-known in differential geometry (see [3]).
In addition to metric tensor (2.6) and connection components (3.3) there are

also volume tensor ω and dual volume tensor denoted by the same symbol:

ωijk =
√

detg εijk, ωijk =
εijk

√
detg

, (3.4)

Here εijk = εijk are Levi-Civita symbols. They are defined as follows:

εijk = εijk =











0 if i = j, j = k, or k = i;

1 if (ijk) is even transposition of (123);

−1 if (ijk) is odd transposition of (123).

(3.5)

Levi-Civita symbols (3.5) do not form a tensor. However, supplying scalar factors
to them, we get two tensor fields (3.4).

4. Deformation of continuous medium.

Suppose that our space is filled with medium of some kind. Deformation of
medium is due to the displacement of its points. Suppose that the point with
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coordinates ỹ1, ỹ2, ỹ3 has moved to the point with coordinates y1, y2, y3. This
situation is expressed by the following three functions:











y1 = y1(t, ỹ1, ỹ2, ỹ3),

y2 = y2(t, ỹ1, ỹ2, ỹ3),

y3 = y3(t, ỹ1, ỹ2, ỹ3).

(4.1)

Argument t in (4.1) is responsible for time evolution of displacement. Time deriva-
tives of these functions determine velocity vector components:

vi = ẏi =
∂yi

∂t
, i = 1, 2, 3. (4.2)

Velocity vector v itself is calculated as a sum representing its expansion in moving
frame at the point with coordinates y1, y2, y3:

v =

3
∑

i=1

vi Ei. (4.3)

Functions (4.1) define time-dependent map from space to space. Let’s denote it by
τ . Then inverse map τ−1 is given by similar functions











ỹ1 = ỹ1(t, y1, y2, y3),

ỹ2 = ỹ2(t, y1, y2, y3),

ỹ3 = ỹ3(t, y1, y2, y3).

(4.4)

Quantities vi, as defined in (4.2), are functions of coordinates ỹ1, ỹ2, ỹ3 marking
initial position of a point of medium. Using (4.4) we can convert them to the
functions of coordinates y1, y2, y3 marking current actual position of that point:

vi = vi(t, y1, y2, y3) =
∂yi

∂t
◦ τ−1 : (4.5)

Time dependent maps (4.1) and (4.4) define two Jacobi matrices S̃ and T̃ :

S̃ i
j =

∂yi

∂ỹj
, T̃ i

j =
∂ỹi

∂yj
. (4.6)

Matrices (4.6) are inverse to each other and quite similar to that of (2.3). However,
in contrast to matrices S and T , these two matrices depend on t and describe
physical state of our continuous medium (more precisely, they describe the state of

deformation). Matrix T̃ has proper arguments t, y1, y2, y3, while arguments of S̃

should be corrected by inverse map (4.4), i. e. S̃ → S̃ ◦ τ−1.
Let’s take vectors of moving frame E1, E2, E3 at the point with coordinates

y1, y2, y3 and send them to the point with coordinates ỹ1, ỹ2, ỹ3 by means of map
τ−1. As result we get another frame Ẽ1, Ẽ2, Ẽ3:

Ẽi =

3
∑

r=1

T̃ r
i Es(ỹ

1, ỹ2, ỹ3), i = 1, 2, 3. (4.7)
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Mutual scalar products of frame vectors (4.7) form a matrix with components

Gij = (Ẽi, Ẽj) =

3
∑

r=1

3
∑

s=1

grs(ỹ
1, ỹ2, ỹ3) T̃ r

i T̃ s
j . (4.8)

Upon transforming all arguments in (4.8) to t, y1, y2, y3 we get tensor field G

with components Gij = Gij(t, y1, y2, y3). Tensor G at the point with coordinates
y1, y2, y3 is an exact quantitative measure of deformation of our medium at that
point. For small deformations described in Cartesian coordinates we have

Gij(t, x1, x2, x3) = gij − 2 uij + . . . (4.9)

Tensor u in (4.9) is standard tensor of deformation as defined in [4]:

uij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

. (4.10)

By dots in (4.9) we denote terms of higher order with respect to small displacements
u1 = δx1, u2 = δx2, u3 = δx3. Relying upon above formulas (4.9) and (4.10), now
we define deformation tensor u as follows:

uij =
gij − Gij

2
. (4.11)

Using (4.11) instead of (4.10), we have not to restrict ourself to small displacements
and can consider deformations of any magnitude in any curvilinear coordinates.

Let’s calculate time derivative for deformation tensor u defined by formula (4.11).
Differentiating (4.8), by direct calculations we derive the following formula:

Ġij = −
3
∑

k=1

∇kGij vk −
3
∑

k=1

Gkj ∇iv
k −

3
∑

k=1

Gik ∇jv
k. (4.12)

Now, combining formulas (4.11) and (4.12), we obtain ultimate expression for u̇ij :

u̇ij =
∇ivj + ∇jvi

2
−

3
∑

k=1

(

∇kuij vk + ukj ∇iv
k + uik ∇jv

k
)

. (4.13)

Let’s denote by vij first term in right hand side of (4.13):

vij =
∇ivj + ∇jvi

2
. (4.14)

Last three terms under summation in formula (4.13) are nonlinear with respect
to deformation functions (4.1). They are usually omitted in the case of small
deformations. In that case we would have u̇ij = vij .



6 S. F. LYUKSYUTOV, R. A. SHARIPOV

5. Dynamics of continuous medium.

Dynamics of any continuous medium (either liquid, solid, or gaseous) is usually
described in terms of three balance equations. These are equations for

(1) mass balance;
(2) momentum balance;
(3) energy balance.

Mass balance is most simple among balance equations. It is written on the base
of the following statement: change of mass enclosed in any fixed volume within
continuous medium is determined by mass flow through its boundary:

∂ρ

∂t
+

3
∑

k=1

∇k( ρ vk) = 0. (5.1)

Sum in (5.1) is divergency div j, where j = ρv is density vector for mass flow.
Components of velocity vector are determined by formula (4.5), while operator ∇k

in (5.1) should be applied according to the formula (3.2).

Momentum balance equation is more complicated, though it has the structure
similar to mass balance equation (5.1). Momentum balance is written as

∂( ρ vi)

∂t
+

3
∑

k=1

∇kΠik = f i. (5.2)

Vector f with components f1, f2, f3 in right hand side of (5.2) determines density
of volume forces in continuous medium. Symmetric tensor Π with components Πik

determines density of momentum flow in continuous medium. Exact formulas for
tensors f and Π depend on various properties of medium and on those phenomena
we are going to consider.

Energy per unit of volume in continuous medium is a sum of two components: ki-

netic energy and inner thermal energy due to chaotic motion of atoms and molecules.
Therefore energy balance equation is written as follows:

∂

∂t

(

ρ |v|2
2

+ ρ ε

)

+

3
∑

k=1

∇kwk = e. (5.3)

Vector w with components w1, w2, w3 in (5.3) determines density of energy flow.
Scalar e determines energy production/dissipation per unit volume of medium. It
is due to work of force f in (5.2) and from other possible sources (e. g. Joule heating
due to electric current in conducting medium). Potential energy is not included
into left hand side of (5.3). However, work of potential forces is taken into account
among other terms as a part of scalar e in right hand side of (5.3).

Deformation state of a medium is completely determined by tensor G and metric
tensor g. From (4.12) and (5.1) one easily derives:

ln ρ − ln detG− ln detg

2
= const . (5.4)
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Tensor Π in (5.2) is usually given by the following formula:

Πik = ρ vi vk − σik. (5.5)

Here σik is stress tensor. Substituting (5.5) into (5.2), we get

∂( ρ vi)

∂t
+

3
∑

k=1

∇k( ρ vi vk) = f i +
3
∑

k=1

∇kσik. (5.6)

Now, taking into account (5.1), from (5.6) we derive

∂vi

∂t
+

3
∑

k=1

vk ∇kvi =
f i

ρ
+

3
∑

k=1

∇kσik

ρ
. (5.7)

Using (5.4), now we can calculate time derivative for the density of kinetic energy:

∂

∂t

(

ρ |v|2
2

)

+

3
∑

k=1

∇k

(

ρ |v|2
2

vk

)

=

3
∑

i=1

vi f i +

3
∑

i=1

3
∑

k=1

vi ∇kσik. (5.8)

Looking at formula (5.8), we see that right hand side of this formula is completely
determined by parameters σik and f i from (5.5) and (5.2).

6. Elastic solids state media.

Deformation state of a medium is completely determined by tensor G and metric
tensor g. Therefore ε in (5.3) satisfies the following equality:

dε = T ds −
3
∑

i=1

3
∑

j=1

σ̄ij dGij

2 ρ
. (6.1)

Here s is an entropy per unit mass of solid state medium. Note that σ̄ij in (6.1)
should not coincide with σij considered above. Free energy per unit mass is deter-
mined by standard formula f = ε − T s. Therefore

df = −s dT −
3
∑

i=1

3
∑

j=1

σ̄ij dGij

2 ρ
. (6.2)

Free energy per unit mass f is a function of temperature T and deformation state
of medium: f = f(T,G). From (6.2) we derive

σ̄ij

2 ρ
= −∂f(T,G)

∂Gij

. (6.3)

Solid materials can exhibit different properties in different directions. We consider
only those polymer materials, which are homogeneous and isotropic (i. e. uniform
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in all directions). For such materials f(T,G) is given by formula

f = f(T, λ[1], λ[2], λ[3]), (6.4)

where λ[1], λ[2], λ[3] are three scalar invariants for linear operator G:

λ[1] =
tr(G)

3
, λ[2] =

tr(G ·G)

3
, λ[3] =

tr(G · G · G)

3
. (6.5)

Linear operator G in (6.5) is determined by its matrix G i
j , where

G i
j =

3
∑

k=1

gik Gkj . (6.6)

Using (6.5) and (6.6), we calculate partial derivatives

∂λ[1]

∂Gij

=
gij

3
,

∂λ[2]

∂Gij

=
2 Gij

3
,

∂λ[3]

∂Gij

=

3
∑

k=1

3
∑

q=1

Gik gkq Gqj . (6.7)

Applying (6.3) and (6.7) to (6.4), we find most general formula for σ̄ij :

σ̄ij = f[1] gij + f[2] Gij +
3
∑

k=1

3
∑

q=1

f[3] Gik gkq Gqj , (6.8)

Here f[1], f[2], f[3] are coefficients depending on T and on scalar invariants (6.5):

f[i] = −2 i ρ

3

∂f(T, λ[1], λ[2], λ[3])

∂λ[i]
, i = 1, 2, 3. (6.9)

Formula (6.8) is exact, but very huge. Its use in numeric simulation is impossible
not because of huge computations, but since function (6.4) is not properly measured
experimentally for broad range of its arguments. Formulas (6.8) and (6.9) are worth
for us only because they indicate the dependence

σ̄ij = σ̄ij(T,G). (6.10)

Traditionally linearized version of this dependence (6.10) is used for the case of
small deformations when uij are much less than gij .

Now let’s consider formula (6.2) again. If function (6.4) is known, entropy per
unit mass can be calculated as partial derivative:

s = − ∂f

∂T
. (6.11)

Due to (6.11) we can treat s as a function s = s(T,G). Moreover, s depends on G

through scalar invariants (6.5) just like function f itself:

s = s(T, λ[1], λ[2], λ[3]). (6.12)
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Then for thermal energy per unit mass we get

ε = f + T s = ε(T,G) = ε(T, λ[1], λ[2], λ[3]). (6.13)

If parameters wk and e in (5.3) are known, then, substituting (6.13) into (5.3), we
get the equation for temperature function T = T (t, y1, y2, y3).

In thermodynamics specific thermal energy ε is often treated as a function of
entropy. Indeed, inverting the dependence of s on T for fixed λ[1], λ[2], λ[3] in
(6.12) and substituting T = T (s, λ[1], λ[2], λ[3]) into (6.13), we get

ε = ε(s,G) = ε(s, λ[1], λ[2], λ[3]). (6.14)

In the absence of heat transfer and viscosity, parameters wk and e can be derived
from entropy balance equation. In this case dynamics of solid state medium is
adiabatic. Therefore one can write the equation

∂( ρ s)

∂t
+

3
∑

k=1

∇k( ρ s vk) = 0. (6.15)

By analogy with (6.15), now we calculate the following quantity:

∂( ρ ε)

∂t
+

3
∑

k=1

∇k( ρ ε vk) = ρ
∂ε

∂t
+

3
∑

k=1

ρ vk ∇kε. (6.16)

Applying (6.1) and (6.14) and using ∇kgij = 0, which is basic property of metric
tensor, we get formulas for ∂ε/∂t and ∇kε in right hand side of (6.16):

∂ε

∂t
= T

∂s

∂t
−

3
∑

i=1

3
∑

j=1

σ̄ij Ġij

2 ρ
,

∇kε = T ∇ks −
3
∑

i=1

3
∑

j=1

σ̄ij ∇kGij

2 ρ
.

(6.17)

Substituting (6.17) into (6.16) and taking into account (6.15) and (5.1), we get

∂( ρ ε)

∂t
+

3
∑

k=1

∇k( ρ ε vk) = −
3
∑

i=1

3
∑

j=1

σ̄ij

2

(

Ġij +

3
∑

k=1

vk ∇kGij

)

. (6.18)

Now let’s substitute (4.12) into (6.18). As a result of simple calculations we find

∂( ρ ε)

∂t
+

3
∑

k=1

∇k( ρ ε vk) =
3
∑

i=1

3
∑

j=1

σ̄ij

2

(

3
∑

k=1

∇jv
k Gik +

3
∑

k=1

∇iv
k Gkj

)

=

=

3
∑

i=1

3
∑

j=1

3
∑

k=1

σ̄ik G j
k + σ̄ki G j

k

2
∇ivj =

3
∑

i=1

3
∑

k=1

∇kvi

(

3
∑

j=1

G i
j σ̄jk

)

.
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Note that the above formula is quite similar to formula (5.8). Adding these two
formulas, we obtain the following equality:

∂

∂t

(

ρ |v|2
2

+ ρ ε

)

+

3
∑

k=1

∇k

(

ρ |v|2
2

vk + ρ ε vk

)

=

=

3
∑

i=1

vi f i +

3
∑

i=1

3
∑

k=1

vi ∇kσik +

3
∑

i=1

3
∑

k=1

∇kvi

(

3
∑

j=1

G i
j σ̄jk

)

.

(6.19)

Right hand side of the equality (6.19) simplifies substantially if stress tensor σik

and tensor σ̄ij introduced in (6.1) are related as follows:

σik =

3
∑

j=1

G i
j σ̄jk . (6.20)

Due to the relationship (6.20) formula (6.19) transforms to the following one:

∂

∂t

(

ρ |v|2
2

+ ρ ε

)

+

3
∑

k=1

∇k

(

ρ |v|2
2

vk + ρ ε vk

)

=

=

3
∑

i=1

vi f i +

3
∑

i=1

3
∑

k=1

∇k(vi σik).

(6.21)

The relationship (6.20) is self consistent. Indeed, if (6.20) is fulfilled then we have
the equality (6.21) with quite transparent interpretation. First two terms in (6.21)
describe energy increment and energy flow due to mass transport. Two terms in
right hand side of (6.21) describe energy creation due to external forces and due to
stress forces in continuous medium. Comparing (6.21) and (5.3), we get

wk =
ρ |v|2

2
vk + ρ ε vk −

3
∑

i=1

vi σik, e =

3
∑

i=1

vi f i. (6.22)

Due to special form of tensor σ̄ and due to (6.20) stress tensor σ is symmetric:
σij = σji. Indeed, from formula (6.8) for components of stress tensor we derive

σij = f[1] Gij +

3
∑

k=1

3
∑

q=1

f[2] Gik gkq Gqj +

+

3
∑

k=1

3
∑

q=1

3
∑

m=1

3
∑

n=1

f[3] Gik gkq Gqm gmn Gnj .

(6.23)

Remember that coefficients f[1], f[2], f[3] in (6.23) are determined by formula (6.9).
They depend on deformation G and temperature T .

7. Heat transfer, viscosity, and entropy production.

Formulas for Πik and wk in balance equations (5.2) and (5.3) become more
complicated if we take into account viscosity and thermal conductivity of medium.
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In the case when ∇v 6= 0 different parts of medium immediately adjacent to each
other move with different velocities. This gives rise to forces of viscous friction.
These forces are described by additional term in (5.5):

Πik = ρ vi vk − σik − σ̃ik. (7.1)

Here σ̃ik are components of viscous stress tensor σ̃. In linear approximation they
are linear with respect to velocity gradients:

σ̃ik =

3
∑

j=1

3
∑

q=1

ηikjq vjq . (7.2)

Here vjq are components of symmetric tensor introduced in (4.14), while ηikjq in
(7.2) are components of viscosity tensor. They possess the following symmetry:

ηikjq = ηjqik = ηkijq = ηikqj . (7.3)

Components of viscosity tensor (7.3) are kinetic coefficients. In near equilibrium
deformations they are functions of temperature and deformation tensor:

ηikjq = ηikjq(T,G). (7.4)

If continuous medium is non-uniformly heated, i. e. ∇T 6= 0, this may cause
direct heat transfer without mass transport in it. This phenomenon is due to
thermal conductivity of medium. Thermal conductivity of medium is described by
additional term in formula for density of energy flow w:

wk =
ρ |v|2

2
vk + ρ ε vk −

3
∑

i=1

vi σik −
3
∑

i=1

vi σ̃ik −
3
∑

i=1

∇iT κ
ik. (7.5)

As compared to (6.22), in (7.5) we have two extra terms. First is due to viscous
stress tensor σ̃, second term contains components of heat conductivity tensor κ

ik.
Like ηikjq in (7.4), components of heat conductivity tensor are kinetic coefficients,
they depend on temperature T and deformation G:

κ
ik = κ

ik(T,G). (7.6)

Heat conductivity tensor (7.6) is symmetric, i. e. κ
ik = κ

ki.
Let’s recalculate entropy balance equation (6.15), taking into account additional

terms in (7.1) and (7.5). Instead of (6.21) now we have

∂

∂t

(

ρ |v|2
2

+ ρ ε

)

+

3
∑

k=1

∇k

(

ρ |v|2
2

vk + ρ ε vk

)

=

=

3
∑

i=1

vi f i +

3
∑

i=1

3
∑

k=1

∇k(vi σik + vi σ̃ik) +

3
∑

i=1

3
∑

k=1

∇k(∇iT κ
ik).

(7.7)
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Equations (5.7) and (5.8) are replaced by the following two equalities respectively:

∂vi

∂t
+

3
∑

k=1

vk ∇kvi =
f i

ρ
+

3
∑

k=1

∇kσik

ρ
+

3
∑

k=1

∇kσ̃ik

ρ
,

∂

∂t

(

ρ |v|2
2

)

+
3
∑

k=1

∇k

(

ρ |v|2
2

vk

)

=

=

3
∑

i=1

vi f i +

3
∑

i=1

3
∑

k=1

vi ∇kσik +

3
∑

i=1

3
∑

k=1

vi ∇kσ̃ik.

(7.8)

Subtracting (7.8) from (7.7) and taking into account (5.1), we obtain

ρ
∂ε

∂t
+

3
∑

k=1

ρ vk ∇kε =

3
∑

i=1

3
∑

k=1

(

∇kvi (σik + σ̃ik) + ∇k(∇iT κ
ik)
)

. (7.9)

For derivatives ∂ε/∂t and ∇kε in left hand side of (7.9) we can apply (6.17). Then

T
∂( ρ s)

∂t
+

3
∑

k=1

T ∇k( ρ s vk) −
3
∑

i=1

3
∑

j=1

σ̄ij

2

(

Ġij +

3
∑

k=1

vk ∇kGij

)

=

=
3
∑

i=1

3
∑

k=1

(

∇kvi (σik + σ̃ik) + ∇k(∇iT κ
ik)
)

.

(7.10)

Now let’s substitute (4.12) into (7.10) and take into account formula (6.20):

∂( ρ s)

∂t
+

3
∑

k=1

∇k( ρ s vk) =

3
∑

i=1

3
∑

k=1

∇kvi σ̃ik + ∇k(∇iT κ
ik)

T
=

=

3
∑

i=1

3
∑

k=1

∇k

(∇iT κ
ik

T

)

+

3
∑

i=1

3
∑

k=1

3
∑

j=1

3
∑

q=1

vik ηikjq vjq

T
+

3
∑

i=1

3
∑

k=1

∇iT κ
ik ∇kT

T 2
.

In ultimate form this is entropy balance equation generalizing equation (6.15):

∂( ρ s)

∂t
+

3
∑

k=1

∇k

(

ρ s vk −
3
∑

i=1

∇iT κ
ik

T

)

=

=

3
∑

i=1

3
∑

k=1

3
∑

j=1

3
∑

q=1

vik ηikjq vjq

T
+

3
∑

i=1

3
∑

k=1

∇iT κ
ik ∇kT

T 2
.

(7.11)

Last two terms in (7.11) are positive. This means that total entropy is ever growing,
when medium is evolving toward thermodynamic equilibrium.

8. Liquid state media.

Balance equations in liquids are quite similar to those in elastic solid materials.
The only difference is that liquids are always isotropic. Deformation state of liquid
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material is completely determined by its density ρ. Therefore, instead of (6.13), for
specific thermal energy per unit mass we have

ε = ε(T, ρ). (8.1)

Like ε in (8.1), specific free energy per unit mass is given by formula

f = f(T, ρ). (8.2)

Density ρ is related to deformation G by means of formula (5.4). Hence

dρ

ρ
=

d(ln detG)

2
=

tr(G−1 dG)

2
=

3
∑

i=1

3
∑

j=1

Ḡij dGij

2
, (8.3)

where Ḡij are components of inverse matrix G−1. Differentiating (8.2) and taking
into account (8.3), due to the equality (6.2) we have

σ̄ij = −ρ2 ∂f

∂ρ
Ḡij . (8.4)

Substituting (8.4) into (6.20), we obtain formula for stress tensor in liquid medium:

σij = −ρ2 ∂f

∂ρ
gij . (8.5)

Scalar factor in (8.5) is interpreted as pressure. Indeed, we have

p = ρ2 ∂f

∂ρ
, σij = −p gij. (8.6)

Viscosity tensor in liquids simplifies and takes the following form:

ηikjq = η
(

gij gkq + giq gjk
)

+

(

ζ − 2

3
η

)

gik gjq . (8.7)

Heat conductivity tensor in liquid medium is also simpler than in solid media:

κ
ik = κ gik. (8.8)

Pressure p in (8.6) and scalar parameters η, ζ, and κ in (8.7) and (8.8) all are
functions of temperature T and density ρ of continuous medium:

p = p(T, ρ), η = η(T, ρ),

ζ = ζ(T, ρ), κ = κ(T, ρ).

Other parameters in balance equations (5.1), (5.2), (5.3) for liquids are same as for
solid state media.



14 S. F. LYUKSYUTOV, R. A. SHARIPOV

9. Plastic materials.

Saying plastic materials we mean pitch-like very dense sticky liquids and many
solid materials with no crystalline grid, e. g. glass and polymer materials. They
resist to deformations like solids and can flow like liquids, though sometimes very
slowly. In order to describe such materials mathematically we need to divide de-
formation G into two parts: elastic deformation Ĝ and plastic deformation Ǧ:

Gij =

3
∑

k=1

3
∑

q=1

Ǧ k
i Ĝkq Ǧ q

j . (9.1)

Like Gij , elastic deformation tensor Ĝik in (9.1) is symmetric: Ĝik = Ĝki. Plastic

deformation tensor Ǧkj is not necessarily symmetric.
Plastic deformation arises as a response to stress tending to relax this stress.

Elastic deformation tensor Ĝ is thermodynamic parameter of plastic medium, while
plastic deformation tensor Ǧ is kinetic parameter. Therefore all thermodynamic
quantities and kinetic coefficients for near thermodynamic equilibrium deformations
of plastic medium depend on elastic deformation tensor Ĝ and on temperature:

ε = ε(T, Ĝ), f = f(T, Ĝ),

σ̄ij = σ̄ij(T, Ĝ), σij = σij(T, Ĝ), (9.2)

ηikjq = ηikjq(T, Ĝ), κ
ik = κ

ik(T, Ĝ).

Components of total deformation tensor Gij in (9.1) satisfy differential equations
(4.12). These equations can be written as follows:

∂Gij

∂t
+

3
∑

r=1

vr ∇rGij = −
3
∑

r=1

∇iv
r Grj −

3
∑

r=1

Gir ∇jv
r. (9.3)

For components of elastic deformation tensor Ĝij we write analogous equation:

∂Ĝkq

∂t
+

3
∑

r=1

vr ∇rĜkq = −
3
∑

r=1

∇kvr Ĝrq −
3
∑

r=1

Ĝkr ∇qv
r + 2 Θkq. (9.4)

Components of symmetric tensor Θ in (9.4) are kinetic coefficients. Therefore

Θkq = Θkq(T, Ĝ). (9.5)

Now we need some special facts concerning all three deformation tensors in (9.1).
Symmetric matrix Gij determined by formula (4.8) is non-degenerate and positive.

Due to (9.1) we have the equality detG = det Ĝ · (det Ǧ)2. Hence

det Ĝ 6= 0, det Ǧ 6= 0. (9.6)

Moreover, due to (9.1) and (9.6) matrix Ĝkq is also positive. Now let’s use formula
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analogous to (6.6) and define linear operator Ĝ with components

Ĝ i
j =

3
∑

k=1

gik Ĝkj . (9.7)

Theorem 9.1. For any symmetric matrix Θkq and for linear operator Ĝ deter-

mined by formula (9.7) there is unique symmetric matrix θkq such that

2 Θkq =

3
∑

r=1

θkr Ĝ r
q +

3
∑

r=1

Ĝ r
k θrq. (9.8)

This is purely mathematical fact with rather simple proof. Applying theorem 9.1
to matrix (9.5) we get tensor θ with components

θkq = θkq(T, Ĝ). (9.9)

Raising index in (9.9) we get symmetric linear operator θ with components

θ i
j =

3
∑

k=1

gik θkj . (9.10)

Due to (9.8), (9.9), and (9.10) we can write equation (9.4) in the following form:

∂Ĝkq

∂t
+

3
∑

r=1

vr ∇rĜkq = −
3
∑

r=1

∇kvr Ĝrq −

−
3
∑

r=1

Ĝkr ∇qv
r +

3
∑

r=1

θ r
k Ĝrq +

3
∑

r=1

Ĝkr θ r
q .

(9.11)

Now we are able to write differential equations for plastic deformation tensor:

∂Ǧ k
i

∂t
+

3
∑

r=1

vr ∇rǦ
k
i =

3
∑

r=1

(

Ǧ r
i ∇rv

k −∇iv
r Ǧ k

r

)

−
3
∑

r=1

θ k
r Ǧ r

i . (9.12)

Forgetting principle. This is basic principle characterizing plastic deforma-
tions that we consider in present paper. Suppose that plastic medium evolves from
initial state with no deformation at time instant t = 0 to some intermediate state
at t = t0, then it continues its evolution for t > t0. Forgetting principle states that
if in intermediate state total deformation of medium is purely plastic, then further
evolution of medium will be so as if in intermediate state it had no deformation at
all. Equation (9.12) is written on the base of this principle. It is compatible with
(9.1) and with equations (9.3) and (9.11).
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10. Thermodynamics of plastic medium.

Balance equations (5.1), (5.2), and (5.3) remain unchanged for plastic medium.
We also keep unchanged formulas (7.1), (7.2), (7.5), and second formula in (6.22).
However, due to (9.2) and (9.11) we should revise formulas (6.2), (6.3), (6.4), (6.5),
and (6.6). Formulas (6.2) and (6.3) are replaced by the following ones:

df = −s dT −
3
∑

i=1

3
∑

j=1

σ̄ij dĜij

2 ρ
,

σ̄ij

2 ρ
= −∂f(T, Ĝ)

∂Ĝij

. (10.1)

For homogeneous and isotropic plastic material function f(T, Ĝ) is more special:

f = f(T, λ[1], λ[2], λ[3]). (10.2)

Though λ[1], λ[2], λ[3] in (10.2) are different from that of (6.4), they are scalar

invariants of linear operator Ĝ that was defined above by formula (9.7):

λ[1] =
tr(Ĝ)

3
, λ[2] =

tr(Ĝ · Ĝ)

3
, λ[3] =

tr(Ĝ · Ĝ · Ĝ)

3
. (10.3)

Next two formulas are analogous to (6.8) and (6.9):

σ̄ij = f[1] gij + f[2] Ĝij +

3
∑

k=1

3
∑

q=1

f[3] Ĝik gkq Ĝqj , (10.4)

f[i] = −2 i ρ

3

∂f(T, λ[1], λ[2], λ[3])

∂λ[i]
, i = 1, 2, 3. (10.5)

As we said above, we keep unchanged energy balance equation (5.3) with wk

given by formula (7.5) and e given by second formula (6.22). This means that we
keep unchanged formula (7.7). However, thermal energy ε now depends only on
elastic part of deformation tensor. Therefore, we should recalculate relation of σ̄ij

and stress tensor σij . Due to (10.1) and consequent formulas (10.2), (10.3), (10.4),
and (10.5) instead of (6.14) now we should write

ε = ε(s, Ĝ) = ε(s, λ[1], λ[2], λ[3]). (10.6)

By the same reason instead of formulas (6.17) we should write

∂ε

∂t
= T

∂s

∂t
−

3
∑

i=1

3
∑

j=1

σ̄ij

2 ρ

∂Ĝij

∂t
,

∇kε = T ∇ks −
3
∑

i=1

3
∑

j=1

σ̄ij ∇kĜij

2 ρ
.

(10.7)

Applying (5.1) and (7.8) to (7.7), we derive the following equation:

ρ
∂ε

∂t
+

3
∑

k=1

ρ vk ∇kε =

3
∑

i=1

3
∑

k=1

(

∇kvi (σik + σ̃ik) + ∇k(∇iT κ
ik)
)

. (10.8)
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Note that (10.8) is just the same as the equation (7.9). Now we should substitute
(10.7) into this equation. As a result we obtain

ρ T
∂s

∂t
+

3
∑

k=1

ρ T vk ∇ks −
3
∑

i=1

3
∑

j=1

σ̄ij

2

(

∂Ĝij

∂t
+

3
∑

k=1

vk ∇kĜij

)

=

=

3
∑

i=1

3
∑

k=1

(

∇kvi (σik + σ̃ik) + ∇k(∇iT κ
ik)
)

.

(10.9)

Applying (9.4) to the equation (10.9), we transform it to the following one:

ρ T
∂s

∂t
+

3
∑

k=1

ρ T vk ∇ks +

3
∑

i=1

3
∑

j=1

3
∑

k=1

σ̄ij

2

(

∇iv
k Ĝkj + Ĝik ∇jv

k −

−2 Θij) =

3
∑

i=1

3
∑

k=1

(

∇kvi (σik + σ̃ik) + ∇k(∇iT κ
ik)
)

.

(10.10)

Now let’s recall formula (6.20) and write analogous formula in present case

σik =

3
∑

j=1

Ĝ i
j σ̄jk . (10.11)

Applying (10.11) to (10.10), we simplify it substantially. Here is resulting equation

T
∂( ρ s)

∂t
+

3
∑

k=1

T ∇k( ρ s vk) =

3
∑

i=1

3
∑

j=1

σij θij +

+
3
∑

i=1

3
∑

k=1

(

∇kvi (σik + σ̃ik) + ∇k(∇iT κ
ik)
)

.

(10.12)

For Θij in (10.10) we used formula (9.8). By further transformations similar to
that of section 7 we can bring the equation (10.12) to the form analogous to (7.11):

∂( ρ s)

∂t
+

3
∑

k=1

∇k

(

ρ s vk −
3
∑

i=1

∇iT κ
ik

T

)

=

3
∑

i=1

3
∑

j=1

σij θij

T
+

+
3
∑

i=1

3
∑

k=1

3
∑

j=1

3
∑

q=1

vik ηikjq vjq

T
+

3
∑

i=1

3
∑

k=1

∇iT κ
ik ∇kT

T 2
.

(10.13)

As compared to (7.11) in (10.13) we have one extra term in right hand side. It
should be positive like other two terms in right hand side of (10.13):

3
∑

i=1

3
∑

j=1

σij θij

T
> 0. (10.14)

Formulas (10.13) and (10.14) yield physical interpretation of tensor (9.9). This
tensor determines entropy production due to plastic deformation of medium.
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Formula (10.11) relates tensor σ̄ and stress tensor σ. Applying (10.11) to (10.4),
we derive formula for stress tensor of isotropic plastic medium:

σij = f[1] Ĝij +

3
∑

k=1

3
∑

q=1

f[2] Ĝik gkq Ĝqj +

+

3
∑

k=1

3
∑

q=1

3
∑

m=1

3
∑

n=1

f[3] Ĝik gkq Ĝqm gmn Ĝnj .

(10.15)

Formula (10.15) is analogous to (6.23). Like formula (6.23), this formula means
that stress tensor σ is symmetric: σij = σji. In general case for non-isotropic
media symmetry of tensor Π in (7.1) and hence symmetry of σ is derived from
conservation law for angular momentum (see [4]).

Note that in (9.2) we declared that tensors σ and σ̄ depend only on elastic
part of deformation tensor (9.1). However, for coefficients f[1], f[2], f[3] in formulas
(10.4) and (10.15) we have explicit expression (10.5) containing entry of density ρ.
Due to (5.4) density of medium depends on total deformation tensor G, but not

on its elastic part Ĝ only. In order to avoid this discrepancy we need to introduce
additional restriction for plastic part of deformation tensor

det Ǧ = 1. (10.16)

Then due to (9.1) and (10.16) we get det Ĝ = detG and (5.4) is replaced by

analogous relationship binding density ρ to elastic deformation tensor Ĝ:

ln ρ − ln det Ĝ− ln detg

2
= const . (10.17)

Restriction (10.16) and the equality (10.17) following from it are reasonable from
physical point of view. Indeed, according to forgetting principle (see above), plastic
deformations are those which can be forgotten. However deformations changing
density of medium cannot be forgotten. Hence they cannot be purely plastic.

Restriction (10.16) leads to the restriction for tensor θ in (9.12). Indeed, differ-
entiating (10.16) and applying equation (9.12), we derive

tr θ =

3
∑

k=1

θ k
k = 0. (10.18)

Thus, formula (10.18) means that tensor θ determines symmetric linear operator
with zero trace. It is symmetric due to (9.10) and symmetry θkq = θqk.

Plastic deformation is a way for draining stress. Tensor θ determines the rate of
such draining. In elastic solid materials total deformation is purely elastic. There-
fore Ǧ i

j = δi
j . Substituting Ǧ i

j = δi
j into the equations (9.12), we find

θ i
j = 0. (10.19)

Thus, elastic solid medium can be treated as limiting case of plastic medium with
vanishing tensor θ i

j → 0.
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In liquids tensor θ is undetermined. Indeed, above in section 8 we treated liquid
state media in the same way as purely elastic solid state media, but with special
form of free energy function (see formula (8.2)). Then θ is equal to zero like in
(10.19). However, we could treat liquids as plastic media by introducing some
arbitrary tensor θ. In any case stress tensor in liquids is determined by formula

σij = −p gij, (10.20)

see (8.6) above. Substituting (10.20) into left hand side of (10.14), then taking into
account (9.10) and trace condition (10.18), we derive

3
∑

i=1

3
∑

j=1

σij θij

T
= −

3
∑

i=1

3
∑

j=1

p

T
gij θij = −

3
∑

i=1

p

T
θ i

i = 0.

This means that tensor θ for liquid media is not thermodynamically fixed. There-
fore asymptotical behavior of functions θkq = θkq(T, Ĝ) near phase transition point
from plastic solid state to liquid state T → Tph.tr. requires separate investigation.
This will be done in separate paper.
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